
i

A COMMON MODELING LANGUAGE FOR MODEL CHECKERS

PATHIAH BINTI ABDUL SAMAT

THESIS SUBMITTED IN FULFILMENT FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

FACULTY OF INFORMATION SCIENCE AND TECHNOLOGY
UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

2012

ii

BAHASA PEMODELAN UMUM UNTUK PENYEMAK-PENYEMAK MODEL

PATHIAH BINTI ABDUL SAMAT

TESIS YANG DIKEMUKAKAN UNTUK MEMPEROLEH IJAZAH DOKTOR
FALSAFAH

FAKULTI TEKNOLOGI DAN SAINS MAKLUMAT
UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

2012

iii

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries
which have been duly acknowledged.

30 November 2012 PATHIAH BINTI ABDUL SAMAT

 P 33780

iv

ACKNOWLEDGEMENTS

Alhamdulillah, all the praises and thanks be to Allah, with Whose blessings are completed
the righteous deeds. Peace, Blessings and Graces of Allah our Prophet Muhamad (pbuh), his
family and his companions.

Firstly, a special thank to my late-father who has taught me the value of a good
education. I also would like to thank my mother, brothers and sisters for their love, their
kind words of encouragement and advice. I would also like to thank my in-laws family for
their unconditional love and support during these challenging years.

I would like to thank to my supervisor, Prof. Dr. Abdullah Mohd Zin for his constant
support and insightful guidance over the years. He is tremendous supervisors, and I feel
incredibly lucky to have been his student. I thank to him, who generously offered the
precious time in helping me and cheering me when I got stuck. Working with Prof Abdullah
has indeed been a great pleasure. His guidance, patience and support during our discussions
have taught me how to enjoy researching though it is a stressful process. Without his
numerous proof reading of my rough drafts and invaluable suggestions for rewriting, this
thesis work would be far worse. I owe limitless gratitude to him. Thank you for making my
graduate research experience one of the most rewarding and defining moments in my life. I
am very grateful to Prof. Dr. Zarina Shukur, who gave valuable support and advices to
improve my research work.

I would also like to acknowledge the generous financial support to Ministry of
Higher Education (Malaysia) and Universiti Putra Malaysia for giving me the study leave. I
want to thank my colleagues; Ainita, Sharifah, Norhayati, Novia, Salmi, Maryah, Noraini,
Jamilah, Rozi, Ayu, Rokiah, Afiza, Noraida, Masita, and Mabrouka for listening and
discussing my research progress. A special thank to Prof. Dr. Jeff Sanders for his expert
advises and helped me a lot in my research work. I am very grateful to the group members
for participating in the tool`s evaluation. My warm appreciations are also due to the
management, office staff and support team at Faculty of Technology and Information
Science, UKM I really owe them a lot.

Last, but certainly not least, I want to thank my lovely and wonderful husband, Mohd
Haminuddin Zainudin for his love, support, encouragement, understanding and patience
throughout these years. I will never be able to thank him enough for that. I will not even be
able to express my gratitude to and love for him. I would also like to thank my daughter,
Arifah Ilyana for her love and patience. They are indispensable for me to accomplish this
work. I could never have enough words to thank my family for what they did for me.

v

ABSTRACT

In recent years there are extensive use of formal verification tool and techniques to
check on the behavior of computer systems. One of these formal verification techniques is
model checking that is considered to be the most successful approach for verifying
requirements of computer system. There are a number of model checkers that have been
developed. Each of the model checkers is based on different input languages and they are
suitable for model checking different types of systems. Thus, it is important to choose the
right model checker for modeling and verifying a system. However, moving from one model
checker to another is not an easy task since a user has to deal with different input languages.
The main objective of this research is to provide a common modeling language and tool for
model checkers to help users to easily model and specify the properties of a system
effectively. Specifically, the objectives of this research are (1) To identify common features

language for model checkers; (3) To develop a support tool of model checkers to assist users
in modeling task; and (4) To evaluate the suitability of the proposed approach. In this
method, to identify common features, four different model checkers are compared by
modeling and verifying four different types of systems. The development of the common
modeling language is done by studying the most popular modeling tool, especially within
the Unified Modeling Language (UML) community, that is the UML statechart. The
common modeling language is obtained by extending the statechart into a hierarchical form.
Translation rules from the common modeling language to a input language of model
checkers are then described. The development of the software tool is developed by using the
standard software engineering approach. Finally, the evaluation of the proposed language
and tool is conducted with the focus group. There are three major contributions of this study.

languages. Secondly, the research has proposed a common modeling language based.
Thirdly, the research has produced a software tool that could help users in using and
applying the model checkers. The evaluation of the language and tool shows that the
availability of the language and tool can help to reduce the difficulty in modeling and
formalizing properties of a computer system for model checking purposes.

vi

ABSTRAK

Semenjak kebelakangan ini terdapat banyak penggunaan alatan dan teknik verifikasi

formal untuk memeriksa perlakuan sistem komputer. Salah satu teknik verifikasi formal
ialah penyemak model yang dianggap sebagai pendekatan yang paling berjaya untuk
mengenalpasti keperluan sistem komputer. Terdapat pelbagai penyemak model yang telah
dibangunkan. Setiap penyemak model adalah berdasarkan bahasa input yang berbeza dan
sesuai untuk memeriksa model sistem yang berbeza jenis. Oleh itu, adalah penting untuk
memilih penyemak model yang sesuai untuk pemodelan dan pengesahan sistem.
Bagaimanapun, menukar dari satu penyemak model kepada penyemak model yang lain
bukanlah satu tugas yang mudah kerana pengguna perlu berurusan dengan bahasa-bahasa
input yang berlainan. Objektif utama kajian ini adalah untuk menghasilkan bahasa
pemodelan biasa dan alatan untuk penyemak model bagi membantu para pengguna agar
mudah memodel dan mengenalpasti sifat-sifat sistem dengan efektif. Objektif khusus kajian
ini ialah (1) mengenalpasti ciri-ciri umum bahasa input penyemak model; (2)
mencadangkan bahasa pemodelan biasa untuk penyemak model; (3) membangunkan alatan
sokongan penyemak model untuk membantu pengguna didalam tugas pemodelan; dan (4)
menilai kesesuaian pendekatan yang dicadangkan. Dalam kaedah ini, untuk mengenal pasti
ciri-ciri umum, empat penyemak model yang berbeza dibandingkan dengan memodel dan
mengesah model empat jenis sistem yang berlainan. Pembangunan bahasa pemodelan biasa
dilakukan dengan mengkaji alatan pemodelan yang paling popular, terutamanya didalam
komuniti Unified Modeling Language (UML), iaitu statechart UML. Bahasa pemodelan
biasa diperolehi dengan melanjutkan statechart ke dalam bentuk hierarki. Peraturan-
peraturan terjemahan dari bahasa pemodelan biasa kepada bahasa input penyemak model
kemudiannya diterangkan. Pembangunan alatan perisian dibangunkan dengan menggunakan
piawai pendekatan Kejuruteraan perisian. Akhir sekali, penilaian bahasa dan alatan yang
dicadangkan dilaksanakan dengan kumpulan fokus. Terdapat tiga sumbangan utama kajian
ini. Pertama, kajian ini telah mengenalpasti ciri-ciri umum di kalangan bahasa input
penyemak-penyemak model. Kedua, penyelidikan telah mencadangkan satu bahasa
pemodelan biasa. Ketiga, penyelidikan telah menghasilkan satu alatan perisian yang boleh
membantu pengguna dalam mengguna dan mengaplikasi penyemak model. Penilaian bahasa
dan alatan menunjukkan bahawa adanya bahasa dan alat yang boleh membantu untuk
mengurangkan kesukaran dalam pemodelan dan memformalkan sifat-sifat sistem komputer
bagi tujuan penyemakan model.

vii

CONTENTS

 Page

DECLARATION iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

ABSTRAK vi

CONTENTS vii

LIST OF ILLUSTRATIONS xii

LIST OF TABLES xvii

LIST OF ABBREVIATIONS xviii

CHAPTER I INTRODUCTION

1.1 Research Background 1

1.2 Research Problems 4

1.3 Proposed Solution 5

1.4 Research Objectives 6

1.5 Research Scope 7

1.6 Organization of the Thesis 7

CHAPTER II LITERATURE REVIEW

2.1 Introduction 9

2.2 Software Verification 9

2.2.1 Informal Verification 10
2.2.2 Formal Verification 11

2.3 Model Checking 15
 2.3.1 Model: Sequential Automata 15

2.3.2 Specification: Temporal Logic 18

2.4 Model Checking Tools 20

viii

2.4.1 SMV 23
 2.4.2 UPPAAL 25
 2.4.3 PRISM 30
 2.4.4 SPIN 33

2.5 Modeling Language 38

 2.5.1 Formal Specification Language 39
 2.5.2 Finite State Machine 40
 2.5.3 Kripke Structure 41
 2.5.4 Labeled Transition System 42
 2.5.5 Process Algebra 43

2.6 Common Modeling Language 44

 2.6.1 Extended Hierarchical Automata 44
 2.6.2 Timed Restricted Statechart 49

2.7 UML Statechart 50

 2.7.1 State 51
 2.7.2 Transition 52
 2.7.3 Semantic of Statechart 54
 2.7.4 XML Metadata Interchange 56

2.8 Common Feature 57

2.9 Discussion 58

CHAPTER III METHODOLOGY

3.1 Introduction 61

3.2 Research Design 61

3.2.1 Theoretical Study 63
3.2.2 Empirical Study 63
3.2.3 Model Construction 63
3.2.4 Model Evaluation 64

3.3 Theoretical Study 64

3.4 Empirical Study 65

3.4.1 Research Questions 66
 3.4.2 Comparative Study 67

3.5 Model Construction 68

3.5.1 Proposed Common Modeling Language 69
3.5.2 Implementation of Proposed Method 70

ix

3.6 Model Evaluation 71

3.6.1 Evaluation Methods 73
3.6.2 Design of Study 76
3.6.3 The Task List and Group Discussion Design 76
3.6.4 The Questionnaire Design 77

3.7 Summary 78

CHAPTER IV ANALYSIS OF MODEL CHECKERS LANGUAGE

4.1 Introduction 79

4.2 Case Study 1 79

4.2.1 Modeling and Verifying in SMV 82
4.2.2 Modeling and Verifying in PRISM 85
4.2.3 Modeling and Verifying in UPPAAL 93
4.2.4 Modeling and Verifying in SPIN 100

 4.3 Case Study 2 104

4.3.1 Modeling and Verifying in SMV 107
4.3.2 Modeling and Verifying in PRISM 109
4.3.3 Modeling and Verifying in UPPAAL 111
4.3.4 Modeling and Verifying in SPIN 114

4.4 Case Study 3 116

4.4.1 Modeling and Verifying in SMV 118
4.4.2 Modeling and Verifying in SPIN 119
4.4.3 Modeling and Verifying in PRISM 121
4.4.4 Modeling and Verifying in UPPAAL 126

4.5 Case Study 4 127

4.5.1 Modeling and Verifying in SMV 129
4.5.2 Modeling and Verifying in SPIN 132
4.5.3 Modeling and Verifying in PRISM 134
4.5.4 Modeling and Verifying in UPPAAL 136

4.6 Discussion 140

4.7 Conclusion 144

CHAPTER V DEVELOPMENT OF COMMON MODELING LANGUAGE

5.1 Introduction 146

5.2 Definition of Common Modeling Language 147

x

5.3 Rules of Translation 150

5.3.1 Rules from CML to I-smv 151
5.3.2 Rules from CML to I-prism 152

5.4 Experiment 1 154

5.4.1 Translating Elevator Model from CML to I-smv 155
 5.4.2 Translating Elevator Model from CML to I-prism 157

5.4.3 Verification Result 159

5.5 Experiment 2 160

5.5.1 Translating DVCMS Model from CML to I-smv 162
5.5.2 Translating DVCMS Model from CML to I-prism 165
5.5.3 Verification Result 167

5.6 Conclusion 168

CHAPTER VI IMPLEMENTATION AND EVALUATION

6.1 Introduction 169

6.2 Implementation of Textual CML 170

6.3 Implementation Tool Support of SMV Model Checker 175

6.4 Implementation Tool Support of PRISM Model Checker 181

6.5 Applying the Tool 189

6.5.1 Support Tool of SMV 189
6.5.2 Support Tool of PRISM 193

6.6 Evaluation 197

6.6.1 Analysis of Task List and Group Discussion 197
 6.6.2 Analysis of Questionnaires 199

6.7 Conclusion 202

CHAPTER VII CONCLUSION AND FUTURE WORKS

7.1 Conclusions 203

7.2 Research Contributions 205

7.3 Limitation of the Research 207

7.4 Future Works 207

xi

 7.4.1 Extending the Feature of the Common Modeling 207
 Language
 7.4.2 Improving Software Tools 208
 7.4.3 Formal Verification of the Translation Rules 208

REFERENCES 210

APPENDIX

A Case Study for Evaluation 223

B Task Lists and Discussion Group 224

C Questions for Correctly Transform 239

D Questions for Usability 240

E Elevator Model in SMV language 241

F Elevator Model in PRISM Language 245

G Elevator Model in Promela 251
H DVCMS Model in SMV Language 255

I DVCMS Model in PRISM Language 257

J Traffic Light Model in SMV Language 260

K Traffic Light Model in PRISM Language 262

L Sample Codes of DVCMS in SMV Language 264

M Sample Codes of DVCMS in PRISM 266

N Publications 269

xii

LIST OF ILLUSTRATIONS

Figure No. Page

2.1 Waterfall Process of SDLC 10

2.2 Model checking Approach 14

2.3 A model of a digicode 16

2.4 The Cabin 17

2.5 The Door 17

2.6 The Controller 18

2.7 24

2.8 The Door Template 28

2.9 The Cabin Template 28

2.10 The Controller Template 29

2.11 The structure of PRISM 30

2.12 The structure of PRISM language 31

2.13 The structure of SPIN simulation and verification 34

2.14 Schema specifying a container 39

2.15 The specification of an indicator 40

2.16 A 10-bit Counter as a Finite State Machine 41

2.17 Example of a Kripke Structure 41

2.18 Example of a Labeled Transition System 42

2.19 A Sample of Statechart 45

2.20 A Sample Extended Hierarchical Automaton 46

xiii

2.21 A Statechart Diagram 52

2.22 A Fork and a Join Segment 53

2.23 A Branch and a Merge Segment 53

2.24 The Run-To-Completion Step 55

3.1 The research framework to propose a common modeling 62

language of model checkers

3.2 The activities involved in the four-phased research approach 62

3.3 The inputs, activities and deliverables of the theoretical study phase 65

3.4 The inputs, activities and deliverables of the empirical study phase 68

3.5 The method for designing a common modeling 69

3.6 The process in implementing software tool 70

3.7 The inputs, activities and deliverables of the model construction phase 71

3.8 The inputs, activities and deliverables of the model evaluation phase 78

4.1 The cabin in ten-floor building 80

4.2 The door in ten-floor building 80

4.3 The controller in ten-floor building 81

4.4 The counterexample for flr[2] 85

4.5 The error traces for flr[3] 85

4.6 93

4.7 94

4.8 95

4.9 System declaration of elevator 96

4.10 The display 106

4.11 The record 106

xiv

4.12 The controller of DVCMS 107

4.13 The indicator of DVCMS in UPPAAL 111

4.14 The record of DVCMS in UPPAAL 111

4.15 The controller of DVCMS in UPPAAL 112

4.16 The simulation of DVCMS model in UPPAAL 113

4.17 The retrial approach: automata of the User and the Checkout 117
 Components

4.18 The verification result for P1 124

4.19 The verification result for P2 125

4.20 Average number of retrial per file requests 125
 in case of various number of users

4.21 The User 126

4.22 The checkout 126

4.23 The simulation of interface model in UPPAAL 127

4.24 An example of traffic light 128

4.25 Timer of traffic light 128

4.26 The controller traffic light 129

4.27 The controller of traffic light in UPPAAL 137

4.28 The timer of traffic light in UPPAAL 138

4.29 The light of traffic light in UPPAAL 138

4.30 System declaration for a traffic light 139

5.1 Statechart model 148

5.2 Example of components structure 148

5.3 Statechart model of elevator system 154

xv

5.4 The flatten CML of the elevator system 154

5.5 Statechart model of DVCMS system 160

5.6 The flatten CML of the DVCMS system 161

6.1 Architecture of the prototype 170

6.2 The statechart model of DVCMS 171

6.3 A screen shot of XMI file for DVCMS 171

6.4 Table ExtrinsicObject 172

6.5 Table Transition 172

6.6 A screen shot for a textual of CML 175

6.7 176

6.8 A screenshot of SMV translator 181

6.9 support 182

6.10 A file manager from directory C:\ 189

6.11 XMI format of DVCMS model in support tool of SMV 190

6.12 Textual CML for DVCMS Model in SMV tool 190

6.13 A parts of SMV language in TXT tab 191

6.14 The I-smv interface under FRM tab 192

6.15 I-smv interface for selection of initial state 192

6.16 XMI file in support tool of PRISM 194

6.17 CML in textual representation 194

6.18 Guided translation in support tool of PRISM 195

6.19 Example of DVCMS model in I-prism 195

6.20 Interface for formulized property in support tool PRISM 196

xvi

6.21 Property of DVCMS in Properties (text) 196

6.22 Usability response 200

xvii

LIST OF TABLES

Table No. Page

2.1 Model checking tools 21

2.2 Formal semantics of EHA 46

2.3 Translation rules from EHA to input language of SMV 47

4.1 Resource allocation of elevator 84

4.2 PRISM 90

4.3 erties in UPPAAL 98

4.4 103

4.5 Resource allocation of DVCMS in SMV 109

4.6 110

4.7 AL 113

4.8 116

4.9 The result of traffic light properties in SMV 131

4.10 The result of traffic light properties in SPIN 134

4.11 The result of traffic light properties in PRISM 136

4.12 The result of traffic light properties in UPPAAL 140

4.13 Answers collected during modeling and verifying system 140

6.1 Correctness responses 198

6.2 Usability response 199

xviii

LIST OF ABBREVIATIONS

UML Unified Modeling Language

CTL Computational Tree Logic

EHA Extended Hierarchical Automata

TRSchart Timed Restricted Statechart

CML Common Modeling Language

V&V Verification and Validation

FSM Finite State Machine

STD State Transition Diagram

LTL Linear Temporal Logic

LTS Labeled Transition System

XMI XML Metadata Interchange

DVCMS Digital Video Control and Monitoring System

TCTL Timed Computational Tree Logic

I-smv SMV input language

I-prism PRISM input language

CHAPTER I

INTRODUCTION

1.1 RESEARCH BACKGROUND

Since several years ago, a numerous modeling languages have been introduced to achieve

modeling tasks especially in software engineering field. A modeling language is any

artificial language that can be used to express information or knowledge or systems in a

structure that is defined by a consistent set of rules. The rules are used for interpretations of

the meaning of components in the structure. Most of modeling languages are categorized as

formal modeling language and semi-formal modeling language (Safaa and Muhamed 2008).

Formal modeling languages have been built with formal method. In this case, its

specification has clear meaning and unambiguous. Therefore, these languages are

specifically used as formal specification. These includes; Z language (Giovanni et. al. 2010;

Zarina et. al. 2006), B language (Ledang and Souquieres 2001), VDM (Jones 1990) and

RSML (Leveson et. al. 1994). There are also formal modeling languages which are used

specifically for formal verification. These include; Kripke Structure (Clarke et. al. 2002),

Labeled Transition System (Massink 2006; Gordon et. al. 2007), process algebra (Baeten

-

calculus (Milner et. al. 1992), petri net (Seadward and Mazza 2007), etc.

The popular semi-formal modeling language is Unified Modeling Language (UML).

UML support many diagrams which is useful in helping software engineers to develop

software artifacts such as requirement, analysis and design. These include; analysis

(Erikkson et. al. 2004; David et. al. 2009), design (Shanti and Kumar 2012; Takafumi and

Motoshi 2006), requirement (Novia and Kotonya 2011; Hasnira and Nazean 2006; Farid and

Maurad 2009). Statechart is one of diagrams provided by UML. Statecharts which are

hierarchical state machines, i.e. finite state machines whose states themselves can be other

2

machine. In this case, statechart document the various states, i.e. composite state, basic state,

and orthogonal state that a class can go through, and the events that cause a state transition,

together with the resulting actions (Jansamak and Surarerks 2004; Martin et. al. 2007;

Engels et. al. 2002). The hierarchical features of statechart UML will beneficial to formal

method techniques which are strictly depend on the formal modeling. An example of formal

method technique that depend on formal modeling is model checking.

Model checking is an automated verification technique which accept two type of

input; model of a system which is described as formal model and properties of a system

which is written in temporal logic formula. For example, SMV model checking accepts

model of a system that described as finite automata and Kripke structure. SMV also accepts

properties that written in Computational Tree Logic (CTL). Both of inputs; i.e. formal model

and temporal logic formula must be transfer to input language of SMV. The overall tasks in

using model checking are fully depending on formal modeling. This task is too hard

especially for a first time user. By utilizing statechart UML, a JAVA application can be

generated to replace formal modeling. A number of researches have been employed

statechart as medium for modeling states machine system to enable verified by model

checking. Most of researchers provided their own name of statechart for representing the

characteristics of problem solving. These include; RTSCHART (Scott 2003), Extended

Hierarchical Automata or EHA (Sara 2006), STATEMATE (Vitus 2006). According to Sara

(2006), EHA is referred as an alternative equivalent representation for statechart diagram. In

our case, we provide Common Modeling Language (CML) as formal semantics of statechart

UML and act as intermediate representation of statechart diagram. Therefore, the term of

common modeling language is referred to formal semantics of statechart UML and used as

intermediate representation for translating to any input language of model checkers.

Nowadays, computerized systems are extensively used in application where failure is

unwanted or still intolerable, such as elevator control systems, video-on-demand

applications, traffic-light systems and coffee-machines. We often read of incidents where

some malfunction is caused by fault in hardware or software system. The most tragic

example of such a fault is the destruction of the Ariane 5 rocket (Jacques-Louis et. al. 1996),

due to a floating point overflow; one bug and one crash (Gerard 1997). Based on Ariane 5

rocket tragedy, the need for trustworthy hardware and software system is critical. As

increasing number of such systems are being used in our lives, it is important that their

correctness is properly verified. Practically, it is impossible to shut down a malfunctioning

3

system in order to restore safety; where in reality we are very much dependent on such

systems for both their continuous operation and proper functioning. The lesson learned from

this tragedy is that the system or software must go through the process of verification and

validation for ensuring on their correctness.

Verification and validation (V & V) have become important and it is necessary start

at the beginning of the software development life cycle. Over the past 20 to 30 years,

software development has evolved from small tasks involving a few people to enormously

large tasks involving many people. Because of this change, verification and validation has

similarly undergone a change. Obviously, the traditional V & V have reached the limits of

system complexity for which they can offer high assurance. As system complexity increases,

the number of test cases needed to cover the range of possibilities and to cover the internal

computational paths grows exponentially. Thus, the traditional V & V is not capable to

provide high guarantee due to the complexity of system behavior. In contrast, automated V

& V is more inclusive than traditional because it can replace individual test cases with

representational calculation that cover the whole swaths of the test space at once. An

example of an automated V & V is model checking which have been proven to be very

successful in revealing subtle design and implementation faults in complex system behavior.

A number of model checkers exist; the popular model checkers in research are SMV

(McMillan 1999), UPPAAL (Bengtsson 2002), SPIN (Holzmann 2004) and PRISM (Marta

2003; Chandren et. al. 2010). However, these model checkers comes in a package with its

own input language which has strict notations and features (Bhaduri and Ramesh 2004).

According to Berard (1999), SMV language is used to describe a finite state transition

relational model. In SMV, properties of the model to be verified are specified in a

temporal logic known as Computational Tree Logic (CTL). Holzmann (2004) claims that

SPIN accepts design specifications written in the verification language Promela and it

accepts correctness claims specified in the syntax of standard Linear Temporal Logic

(LTL). In UPPAAL, systems to be verified have to be represented with a collection of

timed automata (Bengtsson 2002). PRISM also known as probabilistic model checking is

an automatic procedure for establishing if a desired property holds in a probabilistic

system model (Marta 2003). Properties to be checked against the constructed model are

specified using temporal logic Probabilistic Computation Tree Logic (PCTL). Another

manually. Using model checker for formal verification requires several steps to be

4

completed. Firstly, user has to model the behavior of a system at abstraction level in

informal way by applying state transition diagram or statechart diagram. Secondly, an

informal model of a system needs to be transferred to a formal model which is based on

mathematical representation. Thirdly, the formal model and specification (in temporal logic)

of a system need to be translated to input language of model checker. Fourthly, model and

its specification is verified using model checking engine. As a result, these model checkers

are difficult to use and this avoid users for moving from one model checker to another

because users have to spend time to learn its input language including the technical steps

mentioned above.

In this thesis, a common modeling which can be applied by all model checkers is

introduced. The standard modeling language such as Unified Modeling Language (UML) is

employed to skip and reduce the steps in using model checkers. This led us to develop a

support tool of model checkers.

1.2 RESEARCH PROBLEMS

The general problem addressed in the present research is due to every model checkers has its

own input language. Therefore, people who are not familiar with model checking system

have difficulty to choose the right model checker and avoid them to moving from one model

checker to another the use of model

checking techniques is still considered complicated, and is mostly practiced by experts

statement above is quite similar with the statement b model

checker is created and sold by a company often as a stand-alone tool, using its own

language its target market is one where there are

at best only a few individuals who have the ability to use it In addition, the input language

of model checker may be more suitable for modeling a certain type of system compared to

the other model checkers. For example, SPIN language (Promela) is more suitable for

modeling and verifying distributed systems, while UPPAAL language is specifically

designed for real-time systems.

In model checking, both of its inputs (model and specification) must be written using

its input language manually. Meanwhile, user must have good knowledge in system

modeling at abstraction level including specific input language of model checker (Masahiro

2003). First and foremost, we need to understand the notations and symbols of input

5

language. Furthermore, there is no guidance to use this technique, especially in modeling

system using its input language because almost of model checking tools are based on the

text and lacks of visual representation (Prashanth and Shet 2009). In this case, more effort is

required to master the input language before a system can be verified using a specific model

checking tool. This problem would avoid users for moving from one model checker to

another if they think that the current model checker is not suitable for the targeted system. In

addition, modeling system in input language of a model checker becomes more critical when

embedded system is involved.

Embedded systems, such as an elevator system do often have complex control

schemes. They are characterized by concurrency aspects, by synchronization and the

communication among various entities inside and outside the system. The system to be

verified using model checking is always represented as Finite State Machine (FSM). FSMs

are used to represent dynamic system where at each moment the system is considered to be

in one of a finite number of unique states. When a state change occurs, the next state is

chosen based on the system inputs and available transitions. If embedded systems with

complex control schemes are modeled with FSM, the number of states needed to represent

the system behavior quickly explodes which is known as the state explosion problem. In

addition, modeling in FSM becomes unstructured and translation from FSM to input

language of model checker is difficult to understand. According to Rozier (2010), model

checker need user interaction and specialized expertise to be effectively utilized. Therefore,

an automated translation from system requirement to input language of model checker is

required to assist user used model checker especially in a complex system.

There are many ingenious translation methods have been proposed previously. Most

of the translation methods emerge from the complexity of system structure. Also, there are

many languages that have been developed to extend the basic FSM model. The most notable

of these languages is the statechart language (Harel and Naamad 1996). Thus, many

researchers use statechart to solve FSM problem and leads as translation approaches.

1.3 PROPOSED SOLUTION

The arising number of modeling language such as UML to model the behavioral system can

be used to bridge the formal modeling to input language of model checker. As most of the

software engineers are proficient in modeling tools (i.e. Rational Rose, Rhapsody, Altova,

6

ArgoUML), we can apply the behavioral diagram such as statechart to help them in system

modeling. By extending or enhancing statechart diagram as to fit with finite state machine

system, we can help them to skip formal modeling by replacing it with common modeling

language. This common modeling language is common to any model checkers and can be

used as intermediary between formal modeling and input language of model checkers. Thus,

this solution also offers flexibility to software engineer to choose the right model checker for

their system. Based on this common modeling language, an interface system can be

developed to aid in system modeling.

Another potential solution is to provide guided translation from common modeling

language to input language of model checkers. This will avoid user to think much about

what should be written in states, transitions, state variables and synchronizations in input

language. By offering more translation rules from common modeling language to several

model checkers, this give freedom to people to move from one model checker to another.

We can apply common modeling language and translation mentioned above to

develop a supporting tool to assist people to use model checker. As mentioned earlier, model

checking suffer from modeling and formulizing tasks because almost all of these tasks need

to be performed manually. In addition, these tasks also need to be performed in

mathematical model as input for model checkers. The tool may support people to perform all

of these tasks by reducing technical activities such as transform informal modeling to formal

modeling, transform formal modeling to input language of model checker and formulizing

the properties of system. The tool should also support user to formulizing the properties of

system by providing type checking and pull-down selection for states, operators and other

variables.

1.4 RESEARCH OBJECTIVES

The main objective of our research is to propose a common modeling language of model

checkers. These would lead us to develop translation rules which are used to translate the

common modeling language to input language of model checkers.

Specific objectives of the research are:

7

1. To identify the common features of input language model checkers in order to

provide common modeling language for model checkers.

2. To propose a common modeling language for model checkers including the

translation rules from common modeling language to input language of model

checkers.

3. To develop a software tool for translating from the common modeling language

to the input languages of model checkers.

4. To verify the proposed method and how well the proposed method assist users in

modeling tasks by performing user evaluation.

1.5 RESEARCH SCOPE

This research only focused on four different types of model checkers; SMV, PRISM, SPIN

and UPPAAL. The model checkers are chosen because they are widely used in research and

still unstable for commercial. We apply those model checkers to conduct case studies on

four different types of embedded systems. The four type of embedded system are; elevator

system, digital video control and monitoring system, interface management system and

traffic light system. These systems are chosen because they have a variety of behavior and

can contribute to our result of study. There are several aspects which are used to identify the

common features. We only concentrated on (1) the suitability of model checkers to describe

the behavior of a system (2) the capability of model checker to formulizing the properties of

a system (3) the ability of model checker to produce and generate information.

1.6 ORGANIZATION OF THE THESIS

The outlines of the remaining chapters of the thesis are as follows:

Chapter II: This chapter discusses key related research on formal verification such as

model checking and theorem proving including several related area on modeling language.

Review of these research areas has made it feasible to compare several different types of

model checkers described in Chapter IV. This chapter also led us to develop the common

modeling described in Chapter V.

8

Chapter III: This chapter deals with methodologies to analyze the input language of model

checkers, propose common modeling language, implementation of software tool and

evaluation.

Chapter IV: We discuss an analysis work on model checkers. We start with an introduction

of how we conduct the analysis work. We then present our case studies in which each of

case studies applied four different types of model checkers. We record our experience while

using model checker for each case study. Then, we discuss our result with the aim to

identify common features of model checkers.

Chapter V: This chapter introduces and explains our common modeling language together

with rules of translation. We explain our first introduction for this chapter. Then we explain

the formal definition of common modeling and input language that were selected. We then

explain the rules of translation which consist of two types; rules from common modeling to

input language of SMV (I-smv) and rules from common modeling to input language of

PRISM (I-prism). We demonstrate our approach by using a case study to show the

correctness of translation.

Chapter VI: This chapter details the development of our software tool. We explain our first

introduction for this chapter. In section introduction, we explain our software architecture.

Then we explain the implementation of textual common modeling. We then explain the

implementation of tool support for SMV. Next, we explain the implementation of tool

support for PRISM. We also present the evaluation of our prototype for textual common

modeling and support tools of model checkers. Lastly, we end this chapter with conclusions.

Chapter VII: This chapter concludes this thesis. It discusses the overall research results and

limitations of the research. This chapter also suggests some future work that can be

performed to extend this body of research.

CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter discusses the model checking technique which is a part of formal verification

approach. The popular approaches, theorem proving and model checking, are described

along with technical background behind model checking technique. The next section

describes input language which is mandatory used for each of model checkers. Input

language is used to model the behavior of state machine (called as modeling) system before

automatic verification is executed by model checking tools. Most of modeling tasks start

with capturing behavior of state machine at abstraction level. To be precise, the mental

model is converted into formal model followed by input language of a model checkers

(Clark et. al. 2002; Berard et. al. 1999). Modeling tasks are done manually and create a big

gap between users and model checkers. Also presented are UML, statechart diagram, XML

Metadata Interchange which is utilized in this thesis. The review of these research areas has

made it feasible to propose a common modeling of model checkers and translation rules.

This chapter also leads us to develop a support tool of model checkers which is described in

Chapter VI.

2.2 SOFTWARE VERIFICATION

Verification is defined as a process evaluation of a system or component to determine if a

product developed in the current phase to meet specifications of the previous phase (Wallace

et. al. 1996). Therefore, verification is to determine whether the output of a phase which is

also input to a subsequent phase will show the desired output. Verification is the first

approach used in the Software Development Life Cycle (SDLC) and performed between the

phases of requirements analysis, design and implementation of the code. Figure 2.1

illustrates the waterfall process of SDLC.

10

Figure 2.1: Waterfall Process of SDLC

Software development often shows far more expensive than expected. Evidence

indicates that the earlier a defect is discovered in development, the less impact it has on both

the timescales and cost. Bugs discovered late in the development cycle send costs rising and

risk the integrity and safety of a system, especially if the software has been installed.

Obviously, careful planning, organization, and a team with the correct skills all help. Since

its start in the early 1970s, the sequential waterfall model has served as a framework for

software development alternatives. In this model, each phase cascades to the next, which

only starts when the defined goals for the previous phase are achieved. In practice, earlier

phases often need to be revisited as developers work iteratively and requirements come

together as users test prototype versions of the system. Because of this iterative approach, it

is even more important to apply suitable techniques at each stage and within each of

iterations. Generally, there are two types of software verification; informal and formal

verification. Both of types are discussed in the next section.

2.2.1 Informal Verification

Informal verification depends heavily on human reasoning and subjectivity without strict

mathematical formalism. There are many approaches applied in informal verification. These

include; desk checking, peer review, Walkthrough, inspection and review.

11

Desk checking (Beizer 1990) is most traditional means for analyzing a program. It is

the foundation for the more disciplined techniques of walkthroughs, inspection, and reviews.

In order to improve the effectiveness of desk checking, it is important that the programmer

thoroughly review the problem definition and requirements, the design specification, the

algorithms and code listings. The desk checking is used more as a debugging technique than

the d

code.

can be set up which reviews sample code on a regular basis for efficiency, style, adherence

to standard, etc. then provides feedback to the individual programmer. Another possibility is

original programmer or designer. Walkthroughs provides test data and leads the team

through a manual simulation of the system. The test data is walked through the system, with

intermediate results kept on a blackboard or paper. It also should be kept simple given the

constraints of human simulation. The purpose of the walkthrough is to encourage

discussion, not just to complete the simulation on the test data. Most of the errors are

through the application of the test data. Inspection is a means of verifying intellectual

products by manually examining the development product, a piece at a time, by small

groups of peers to ensure that it is correct and conforms to product specifications and

requirement. Inspection is initiated upon the completion of software requirements, software

design; either high or low level, or upon the completion of the first clean compilation of

code. Reviews can be improved by use of effective review techniques. These include the

methods and procedures used by quality assurance when conducting reviews, the means by

which information is gathered, the techniques used to confirm and validate the accuracy of

the information, and method used to evaluate that information.

The above techniques are performed without program execution and can be done

manually or by using special tools. The disadvantage of the above techniques, they are not

powerful enough to verify the complex design system.

2.2.2 Formal Verification

Due to the increasing complex software design, the informal verification is not able to find

defects. Therefore, the approach of formal verification of software design has been studied

by many researchers. Formal verification is an attractive approach because it offers

12

complete coverage of the entire operation of the system. In other words, formal verification

is a good as exhaustive simulation. This is because in formal verification, mathematical

formulas used for the purpose of proving the theorem. The use of formal methods in

verification of specifications has been found to effectively reduce errors. There are many

researches used formal verification to tackled software/system design problem. These

include; Flight Collision Avoidance (Platzer and Clarke 2009), Communication protocols in

distributed system (Pek and Bogunavie 2003), E-services and workflow (Xiang et. al. 2002)

and Dynamic Host Configuration Protocol (Syed et. al. 2006).

Platzer and Clarke (2009) offer an ingenious technique of theorem proving for

avoiding collision of flight maneuvers. They introduced a fully curved flight maneuver and

verify its hybrid dynamics formally using a tool called as KeYmaera. By this approach, they

claim that complex aircraft maneuver can be verified using formal verification technique.

According to Szemethy (2006), formal verification consist of three major tasks; modeling,

specification and verification. In this case, Platzer and Clarke not really specific describe

how system is modeled and specified using KeYmaera, rather, their work are fully use

mathematics notations which is hard to understand by non-mathematical users.

The opposite approach is applied by Syed et al (2006), Xiang et al (2002) and also

Pek and Bogunovic (2003). All of these researchers use model checking technique for

describing design model and specifying properties of a system. For example, Pek and

Bogunovic model and verify Bounded Retransmission Protocol (BRP) using NuSMV. The

BRP is a type of distributed and real-time system. In this approach, Pek and Bogunovic

specified the properties using Real-time CTL or RCTL. Syed use SPIN model checker for

modeling and specifying the Dynamic Host Configuration Protocol (DHCP). Xiang use

Action Language Verifier for modeling and verifying e-services and workflow system.

Although each of model checkers has its own input language, all of these researchers show

systematically work from abstraction model to input language of model checkers. However,

they are not show how to translate the system to be modeled to input language of model

checkers.

According to the research above, there are two methods which are popular used in

formal verification; theorem proving, and model checking. Each of this method has its own

steps and strategies in using it.

13

In theorem proving, model and specification of the system to be proved is described

as mathematical statements. Verification is done by proving theorems about the system. The

evidence must show that the specification statements can be made a formal proof of the

axioms using the rules of inference process. The theorem should be developed and proved

correct with the aim to verify that the model meets the specifications. There are several

automated theorem proof is used to assist in the verification process. These include; Higher

Order Logic (Melham 1991), Prototype Verification System (Owre 2006) and Applicative

Common Lisp 2 (Kaufmann and Moore 2006).

Prototype Verification System (PVS) is based on classical higher order logic, with a

rich type system including base types (boolean, integer, real, etc.), functions, tuples, records,

cotuples, and recursive datatypes. It also allows subtypes derived from predicates, which

means that typechecking may be undecidable. The typechecker does not attempt to prove

everything, but outputs proof obligations in the form of type correctness conditions (TCCs).

The PVS system includes a number of components to aid development, including an Emacs-

based user interface, parser, prettyprinter, typechecker, interactive theorem prover, model

checker, ground evaluator, abstractor, and HTML generator. PVS is implemented in

Common Lisp. The user guides the proof by issuing proof commands. In general a proof

command, if it succeeds, adds one or more children to the current node of the proof tree, and

makes one of the child leaves the new current goal. When a branch is proved, control moves

to a new sibling of the current node, until there are no more unproved leaves.

The Higher Order Logic (HOL) System is designed to support interactive theorem

proving in higher order logic (hence the acronym `HOL'). To this end, the formal logic is

interfaced to a general purpose programming language (ML, for meta-language) in which

terms and theorems of the logic can be denoted, proof strategies expressed and applied, and

logical theories developed. The primary application area of HOL was initially intended to be

the specification and verification of hardware designs. However, the logic does not restrict

applications to hardware; HOL has been applied to many other areas.

ACL2 is a theorem proving system produced at Computational Logic, Inc. The

acronym ``ACL2'' stands for ``A Computational Logic for Applicative Common Lisp.''

ACL2 is similar to the Boyer-Moore theorem prover, Nqthm, and Kaufmann's interactive

extension, Pc-Nqthm. However, instead of supporting the ``Boyer-Moore logic,'' ACL2

supports a large applicative subset of Common Lisp. Furthermore, ACL2 is programmed

almost entirely within that language.

14

The major drawback of theorem proving is the user must have expertise in logic to

perform difficult tasks such as writing axiom to be proved. According to Chamarthi et. al.

(2011), users must drive the verification processes, need time and effort to find proof of

conjectures. Since the level of knowledge required and the nature of the proof theorem is

manual, causing this method of verification is an expensive process in terms of time and

requires training. Thus, there are researchers who are combining this technique with model

checking. Seger et. al. (2005) combined model checking linear temporal logic, called

symbolic trajectory evaluation (STE) and the proof of the theorem is written in higher-order

logic called ThmTac. In our context, theorem proving is not suitable approach, because

models of system is depend on user knowledge and do not required logical axioms. On the

other hand, automated model translation is most demanding to help reduce modeling tasks

but automated proof systems requiring extensive external domain expertise especially

mathematician.

Model checking is an automatic technique for checking properties of software and

hardware systems (Clarke et. al. 1999; Berard et. al. 1999; Razali and Garratt 2010). There

are several steps in using model checking. Figure 2.2 shows the essential idea behind model

checking.

Figure 2.2: Model checking Approach

From Figure 2.2, the first step is to specify the properties of the system to be checked (called

as specification). These properties are written in the form of temporal logic statements. The

second step is to construct a formal model (called as models) by using the input language of

the model checker. The verification process is then carried out by a model checking tool.

Once verification process is completed, the system will produce either true if model satisfied

the property, or false if it does not. Most model checkers will also produce a

counterexample if the property is not satisfied by the model. This counterexample is a state

15

sequence that violates the model of the system. This implies that, a model checker will

check whether a model satisfies a given property by exploring all possible behaviors of the

system.

2.3 MODEL CHECKING

Model checking is an automated formal verification technique. There are many studies on

model checking techniques. The use of model checking techniques are not limited to

hardware only, but the technique is also widely used in the verification of software and

programs C. These are the real-time systems (Beyer et. al 2007), software behavioral (Porres

2001) and program C (Chaki et. al. 2004). However, the increasing complexity of software

behavior will affect the usefulness of model checkers. Therefore, from a day to day either

the existing model checker is upgraded or a new model checker is developed to overcome

the problem.

Model checking is fully depending on manual modeling concept and mathematical

discipline as their input. Hence, this section not only discusses the steps use of model

checking such as modeling, specification and its tools but also the others theoretical aspect

behind its modeling. This theoretical aspect is useful to bridge the gap between users and

model checking.

2.3.1 Model: Sequential Automata

The construction model of a system can be shown by using state transition diagram (STD).

This diagram is often depicted by drawing each state as a circle and each transition as an

arrow. An incoming arrow without origin identifies the initial state. As a formal, a

sequential automata is applied for representing system modeled. The sequential automata A

(Sara, 2007), is a 4-tuple (Q, E, T, q0) in which:

 Q is a finite set of states;

 E is the finite set of transition labels;

 T=Q x E x Q is the set of transitions;

 q0 is the initial state

The digicode (Berard et. al. 1999) always serve to control the opening of offices or building

doors. The door opens upon the keying in of the correct character sequence. To keep things

simple, we assume that three keys, A, B and C are available, and that the door opens

whenever ABA is keyed in. Figure 2.3 shows the model of digicode.

16

Figure 2.3: A model of a digicode

By using sequential automata, a formal model of digicode is modeled as below:

 Q= {1, 2, 3, 4};

 E= {A, B, C};
 q0= 1;

T= {(1, A, 2), (1, B, 1), (1, C, 1), (2, A, 2), (2, B, 3), (2, C, 1), (3, A, 4), (3, B, 1), (3,

C, 1)}

The above definition is only suit for modeled a single module or individual system.

However, when we deal with real-life systems, the behavior of the systems is broken up into

modules or subsystems. To model the entire of control system, it is therefore natural to first

model the system components. From this, the global automaton is obtained by having all of

components cooperate together. This cooperation is known as synchronization between

automata. There are two type of synchronization; synchronization by message passing and

synchronization by shared variable.

According to Berard et. al. (1999), synchronization by message passing have

transition labels in which sending a message m, denoted as !m and those receiving message,

denoted ?m. In this synchronization, only the transitions in which a given emission is

executed simultaneously with the corresponding reception will be permitted.

Synchronization by shared variable is a way that components of a system communicate with

each other is to let them share a certain number of variables.

The synchronization is defined as Ai = (Qi, Ei, Ti, q0,i, li), where i=1,..,n and

-

which is inactive during a global transition of the set of components. The Cartesian product

A1 n is simply the automaton A=(Q, E, T, q0, l) where:

 Q = Q1 Qn;
 E = ;

1 ni iE

17

 T = ;
),,('',''

,)),...,(),,...,(),,...,((111

iiiiiiii

nnn

Tqeqandeorqqande
iallforqqeeqq

);,...,(,01,00 nqqq
)()),...,((11 iinin qlqql .

In a Cartesian product, each component Ai -

allowed in the Cartesian product which then form a synchronization set. Thus the

synchronization set is defined as:

ni

iESync
1

Sync indicates that among the labels of the Cartesian product, those which really correspond

to a synchronization (they are permitted) and those which do not (they are forbidden and do

not appear in the resulting automaton).

As an example, we apply an elevator system to describe formal definition above. An

elevator system has a cabin which goes up and down depending on the current floor and on

the commands of the elevator controller. Three door (one per floor) which open and close

according to the commands of the controller. Controller is responsible to issue commands to

the doors and cabin. The informal model of an elevator is shown in Figure 2.4 (the cabin),

Figure 2.5(the door) and Figure 2.6(the controller).

Figure 2.4: The Cabin

Figure 2.5: The Door

18

Figure 2.6: The Controller

There are three components for the above modeling; the doors (for each floor), the controller

and the cabin. To synchronize the components, we have to integrate them together. Thus,

the automaton modeling of the elevator is obtained by synchronize these five automata; door

0, door1, door2, the cabin and the controller:

Sync = {(?open_0,-,-,-, !open_0), (?close_0,-,-,-,!close_0),
 (-,?open_1,-,-, !open_1), (-,?close_1,-,-,!close_1),
 (-,-, ?open_2,-, !open_2), (-,-,?close_2,-,!close_2),
 (-,-,-, ?down, !down), (-,-,-,?up, !up)}

Before translating the model to the input languages of model checker, we have to identify

the properties of the model. There are two properties which describe as follows:

 P1: the door on the given floor cannot open while the cabin is on the different floor.

 P2: the cabin cannot move while one of the doors is open.

The above modeling (Figure 2.4 - Figure 2.6) are then converted to input language of

model checkers together with formal specification of the system properties.

2.3.2 Specification: Temporal Logic

In model checking, the purpose of the system is modeled to be compatible with the system

characteristics to be verified. The properties of a system will be presented as temporal logic

formula. Temporal logic is first introduced by Pnueli (1986) and it used to describe a

sequence of transitions between conditions for the features of the model system. This is

because the sequence of transition takes place on time without the occurrence of the

19

collision. There are two main type of temporal logic which is popular used in model

checking techniques; Computation Tree Logic (CTL) and Linear Temporal Logic (LTL).

Computation Tree Logic or CTL is introduced by Clarke et al (1986), is a formula

based on the statement of specifications used to verify a synchronous system. CTL

expresses state properties that can take into account the branching structure of a transition

system, i.e. that a state can have various distinct successors. For instance, many futures are

possible starting from a given state. Special purpose path quantifiers, A and E, allow one to

quantify over the branching structure of a transition system.

 A states that all the executions out of the current state satisfy property .

 E states that from the current state, there exists an execution satisfying .

The path quantifiers are mostly used in combination with the CTL operators and

they are easiest to understand in terms of the computation tree obtained by unfolding the

Kripke structure. The A and E combinators on the one hand, G and F on the other hand, are

often used in pairs such as EF, AF, EG and AG.

According to Scott (2003), the formula for CTL specifications can be used to present

various features of the system, but it cannot express quantitative temporal logic. Hence, to

address this problem several other variant of CTL have been proposed that include

quantitative timing information to describe specifications for these types of a systems.

Amongst researchers in this area are Mustapha and Mohamed (2005). They improve CTL to

the TCTL formula. For applications intended to verify the system using the TCTL system is

as bimolecular protein (Nathalie et. al 2004). In addition, there are also studies to improve

the performance of such CTL (Laroussimies et. al 2003). Other researchers improve CTL to

include probabilistic which is known as probabilistic CTL (PCTL) to handle probabilistic

system such as CSMA/CD protocol (Marie et. al. 2005) using PRISM and APMC model

checking. The probabilistic CTL was first introduced by Hansson and Jonsson (1994) to

replaces the existential and universal quantification of CTL with probabilistic operator.

Model checking that use PCTL will produce quantitative statement about the system, in

addition to the qualitative statement made by conventional model checking.

Linear Temporal Logic LTL or is the formula specification for asynchronous

systems. An LTL specification describes the intended behavior of a system on all possible

executions. The logic is called linear since a system in a given state is only considered to

have a single successor state in the next instant. The logic is the propositional logic built up

from the elementary propositions augmented with five new operators:

20

the path.

will hold at some state in the path.

 The unar

state on the path.

 1 U 2 states that 1 is verified until 2 is verified.

 us operator (1 R 2).

It requires that 2 holds along the path up to and including the first state where 1 holds,

if 2 ever stops to hold i.e the first property is not required to hold eventually.

Parthasarathy et al. (2004) have used the LTL formula to present the security

features of the system. Among the studies conducted using LTL formula is like a tape

storage (Ibarra and Dang 2003), net unfolding (Esparze and Heljanko 2001) and the

measurement model (Alur et. al. 2001).

In our case, we are not intend to improve or modified the existing temporal logic,

rather we apply these temporal logics in our research. On the other hand, modification on

temporal logic required multi-discipline expertise especially mathematician, software

engineer, engineer and many others. The disadvantage of the result of modifications is the

logic only suitable applied for a specific system.

2.4 MODEL CHECKING TOOLS

Most of model checking tools are developed with its own package. These include formal

language, system interface, facilities, notation and symbols. Therefore mastering a model

checking tool is important to be able to use it. In addition, the formal language of a model

checking tool has its own purpose and features.

Formal language is used to specify a software system (what the system should do)

and to describe a software system (what the system does), and compare the specification and

the description of the system by using mathematical means. We refer formal language of

model checker is same as input language (which always mentioned in this chapter) of a

model checker. This statement is supported by Gunay and Yalum (2010), they said that

system to be verify using model checking is represented in a formal language

21

researches which are refer formal language as input language of model checking are Mota

and Sampaio (2001); Sean and Tomasso (2007) and Gordon et al. (2007).

There are many model checking tools which are developed as an automated

verification technique. Table 2.1 shows several model checking tools including their history

and purposes.

Table 2.1: Model checking tools

Model
checking tool

History Purpose

SMV Developed by Mc Millan in
1992 at Carnegie-Mellon
University

The SMV language is used to
describe a finite state transition
relational model.
Properties of the model to be
verified are specified in
Computational Tree Logic.

Kronos

Developed at VERIMAG by S.
Yovine, A. Olivero, C. Daws
and S. Tripakis

Used to verify the safety and liveness
properties of real-time system and
domain of timing analysis of
hardware circuits.
Use timed extension of CTL and
TCTL, as means of formally
describing the quantitative temporal
properties of the timed-automaton to
be verified.

UPPAAL

Developed by the Basic
Research in Computer Science
laboratory at Aalborg in
Denmark and the Department of
Computer System at Uppsala
University in Sweden, mainly by
W. Yi, K. G. Larsen and P.
Pettersson

UPPAAL is an automatic verification
of real-time systems.
The query language of UPPAAL,
used to specify properties to be
checked, is subset of CTL.

SPIN Developed by G. J. Holzmann at
Bell Labs, Murray Hill, New
Jersey, USA.

SPIN was designed for simulation
and verification of distributed
algorithms.
SPIN accepts design specifications
written in the verification language
PROMELA and it accepts
correctness claims specified in the
syntax of standard Linear Temporal
Logic (LTL).

PRISM

Developed in Kwiatkowska's
group at Birmingham University
and first released in 2001 has
established itself as the
international leader in this area.

PRISM constructs a probabilistic
model either:

 A discrete-time Markov chain
(DTMC)

 inued

22

 A Markov decision process (MDP)
 A continuous-time Markov chain
(CTMC)

Properties to be checked against the
constructed model are specified using
temporal logic:

 PCTL (probabilistic computation
tree logic) for DTMCs and MDPs
 CSL (continuous stochastic logic)
for CTMCs.

HYTECH Developed by T.A. Henzinger,
P.H. Ho and H.Wong-Toi at
Cornell University and
improvements were added at the
University of California,
Berkeley.

Used to analyze linear hybrid
automata.
Can compute subsets of the global
state space when these subsets are
described by expression combining
propositional constraints and
accessibility properties.

Bandera

Developed in the SAnToS
Group at Kansas State
University and the ESQuaReD
Group at University of Nebraska
(Lincoln).

Bandera is a tool set for model
checking concurrent Java software.
Bandera is a model compiler in the
sense that it takes Java source code
as input and compiles it to a program
model expressed in the input
language of one of several existing
verification tools including SMV,
Spin, dSpin, and JPF.

BLAST Developed at Berkeley by Dirk
Beyer ,Thomas A. Henzinger ,
Ranjit Jhala and Rupak
Majumdar in 2005

Blast (Berkeley Lazy Abstraction
Software Verification Tool) is a
software model checker for C
programs. The goal of BLAST is to
be able to check that software
satisfies behavioral properties of the
interfaces it uses. Blast uses
counterexample-driven automatic
abstraction refinement to construct an
abstract model which is model
checked for safety properties.

SLAM Developed at Microsoft
Research by Thomas Ball and
Sriram Rajamani.

Symbolic model checking for C
programs. Can handle unbounded
recursion but does not handle
concurrency. Uses predicate
abstraction, counter-example guided
abstraction refinement and BDDs.

MAGIC

MAGIC (Modular Analysis of
proGrams In C) is developed at
Carnegie Mellon University.

Used for analyzing and reasoning
about software components written in
the C programming language. The
overall goal of MAGIC is to check
conformance between component
specifications and their
implementations.

23

Verus

Developed at Carnegie Mellon
University.

Used to describe the system and its
temporal characteristics.
Use CTL and RTCTL to specify the
property of the system to be verified.

Rabbit Developed by Dick Beyer at
Software System Engineering
Research Group, Brandenburg
Technical University Cottbus,
Germany.

Rabbit is a model checking tool for
real-time systems. The modeling
language is timed automata extended
with concepts for modular modeling.
The tool provides reachability
analysis and refinement checking,
both implemented using the data
structure BDD.

Here, we describe further four different types of model checkers including their

features and input language. These include; SMV (1999), PRISM (2002), SPIN (2003) and

UPPAAL (2008). In addition, these model checkers most likely used in our analysis works

which will discuss in detail especially in Chapter IV.

2.4.1 SMV

The relational model which is used to describe finite state transition is represented

symbolically as an Ordered Binary Decision Diagram (OBDD). Efficient OBDD-based

algorithms are used to verify that the model satisfies the CTL specification. If model

checker finds that a specification not satisfied, a counterexample may be generates which

shows a sequence of events in the model that leads to a fault.

The language provides for descriptions of reusable modules and hierarchical

definition. Synchronous and asynchronous models also may be described. In a synchronous

composition of modules, when a single step of this composition is taken, a single step is

taken in each of the modules. In an asynchronous, or interleaving, composition of modules,

when a step of the composition is taken, a step is taken by exactly one component (Clarke

et. al 1999). The SMV language also provides for the description of non-deterministic

behavior. However, SMV does not support a true timed model and lack of simulation

facilities. According to Scott (2003), if timing is to be represented, the model will be series

of states with each state representing the passage of one unit of time. Therefore, SMV is not

feasible for system with large delay times.

